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Absiracl. A theoretical basis is given for the determination of the static, but wave-veclor
dependent, magnetic susceplibility {unenhanced and enhanced). It is based on the local
density approximation and is applied to the transition metals V, Cr, Rh, Pd as well as Fe,
Co and Ni. In the first group we contrast the susceptibility behaviour of Cr with that of
Pd both of which are near a magnetic instability, and compare these behaviours with that
of V and Rh. In all cases the Stoner parameter J{q) is obtained and discussed. Our
results for the magnetic metals in the second group clearly distinguish the two forms of
Fe, Fcc-Fe having a non-collinear and Boc-Fe a ferromagnetic ground staie. For Fec-Co,
#cP-Co, and Ni the seif-consistently determined magnelic moments were found 1o vanish
for g larger than 0.6, 0.9 and 0.5 in (0, 0, q) (27 /a), respectively. Near these values of
the wave vector the enhanced susceptibility peaks strongly. Our results for the magnetic
susceptibilities are compared with results of other caleulations.

1. Introduction

The determination of the wave-vector and frequency dependent magnetic susceptibil-
ities of metals by first-principles calculations is of considerable importance and has,
consequently, led to a great number of investigations {1-5]. The calculated quanti-
ties can be directly related to experimental data |6, 7], but, more importantly, they
play a central role in theoretical descriptions of interacting electron systems [35, 8,
9]. Although some limited amount of physical information is contained in the un-
enhanced susceptibility [10, 11], it is the enhanced susceptibility that describes the
physical system completely [6, 9).

Several techniques for calculating the wave-vector and frequency dependent, en-
hanced magnetic susceptibility exist [1, 2, 4]. They have many features in common
and we may briefly comment on some of them. First, the electronic band structure
for a crystal with no external magnetic field applied is needed to describe the state
of the system. Second, the enhanced susceptibility is obtained as the solution of an
integral equation that is derived by perturbation theory. The integral equation itself
is solved using approximations. Third, the calculational schemes need, in addition
to computer codes for determining the band structure, rather advanced programs for
the evalvation of the susceptibility. Fourth, the mathematics is quite involved so for
realistic calculations [1, 2] severe approximations are necessary; thus, for instance,
only d bands were taken into account in the calculation of the magnetic response
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by Cooke et al [1], and Callaway er al [2] neglected the wave function overlap at
different sites.

The situation is considerably simpler for the case of the zero-frequency uniform
susceptibility because in this case the response of the electronic band structure to
a small applied magnetic field can be easily calculated [12-14] thus allowing both
a determination of the enhanced static susceptibility [13, 14] and tests of approx-
imate calculational schemes [13]. It is also possible to obtain limited information
on the wave-vector dependence of the static, enhanced susceptibility by simulating a
staggercd magnetic field using supercell calculations [14]. As the supercell contains
periodically repeated fragments of both the jattice and the magnetic field, their peri-
ods should be connected by a simple relation which will not result in an unrcasonably
large supercell. Thus any practical calculations cannot be carried out for magnetic
fields incommensurate with the lattice, or for fields having a period many times larger
than the period of the lattice. Therefore, the supercell approach is not suitable for
obtaining the susceptibility as a continuous function of the wave vector.

A rather recent development in seif-consistent field calculations makes possible
an easy determination of both the enhanced and unenhanced zero-frequency mag-
netic susceptibility for any wave vector (including those incommensurate with the
lattice). This is based on the generalized translational symmetry of the one-electron
Hamiltonian of a spiral magnet as discussed some time ago by Herring [8]; this is
also connected with the work of Korenman and Prange [15] as well as with that of
Haines et al [17). Herring’s theory was applied to modern computational methods
by one of us [18] and enables the calculations to be done self-consistently without
resorting to any supercell geometry. A number of applications to real problems using
spiral magnetic configurations [19, 20], have shown the efiiciency and accuracy of this
approach.

The objects of our calulations are the zero-frequency but wave-vector dependent
unenhanced, x,, and enhanced, x;, magnetic susceptibilities of several transition met-
als. The standard relation [6] connecting these quantities for paramagnetic metals
' X

— ) ) -
where the parameter [ is often referred to as the exchange or Stoner parameter. In
many cases this parameter is treated as a constant independent of the wave vector g,
but a number of authors {3, 21, 22}, did consider its wave-vector dependence. Thus,
Vosko et al [22] suggested a theoretical approach to its g-dependence but did not
apply it to a particular calculation, and in [3, 21] the wave-vector dependence of the
exchange parameter was chosen arbitrarily to obtain a better description of neutron
scattering experiments. Our calculations allow an estimate of the g-dependence of 1
on the basis of a first-principles approach. We will return to (1) in the next section
where we give a simple derivation for both non-magnetic and magnetic systems.

The paper is organized as follows. In section 2 the theoretical background and
some caiculational details are described. Section 3 is devoted to caiculations of the
susceptibilities for the elemental metals V, Cr, Rh and Pd as well as Fe, Co and Nj,
and in section 4 we summarize our results.

2. Calculational technique

To make this paper reasonably seif-contained we give a brief description of the main
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ideas underlying the theoretical method, stressing those points that distinguish it
from conventional band-structure theory. At the basis is the local approximation
to exchange and correlation [23] and the augmented spherical wave method (ASW),
which are empioyed to carry out the seif-consistent band-structure calculations [24].
This method was generalized by Uhl ef a/ [20] to enable the treatment of spiral spin
configurations.

The effective single-particle Hamiltonian for spin-polarized electrons forming a
non-collinear magnetic structure may be written as [18, 20]

H=-A4) UV(r-R,|)U, : 2

where
vor= (% ,2,)

is a potential in the local atomic frame of reference which is defined by setting
the z axis parallel to the direction of the atomic moments. We shall call this the
local coordinate system which may, in general, be different for each atom and which
must be distinguished from the single, global coordinate system. The potentials
V, (¢ = +,-) are unambiguously given in the local coordinate system by means
of functional derivatives {20, 25, 26], and the standard spin-% rotation matrices U
determine the transformation between the global coordinate system and the atomic
systems [20].
A spiral magnetic structure is defined by

m, = m(cos{g- R, )sind,sin{g- R, }sin?#,cosd) 4)

k)

where m,, is the magnetic moment of the nth atom and (g- R,) and ¢ are polar
coordinates. It may be shown easily {8, 18] that the Hamiltonian (2) commutes with
the operator {o, (q)|R, } of a generalized translation defined by

—Lig. O
(ou@IR o) = (PP RSB ) e - R, )
The quantity ¢(r) is a bispinor function, and the operator {e,(g)|R,} combines
a space translation by the vector R, with a spin rotation of (¢ - R,) about the
global axis. These generalized translations form an Abelian group isomorphic with
the group of ordinary space translations by the vector R,,. Therefore, the irreducible
representations of both groups coincide and for the eigenfunctions of the Hamiltonian
(2), there exists a generalized Bloch theorem

{an (DR} (r) = exp(—ik - Ry ) (r) (6)

where the vectors & lie in the first Brillouin zone which is defined in the usual way
- by the vectors R,. This means that for the actual calculations one only needs the
chemical unit cell, and not a supercell.

A general starting point for a band-structure calculation is expansion of the Bloch
bi-spinor function in the form

Yplr) = Z Cre®ionlr) (N
Le
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where, because of (6), &, may be written 43 a lattice sum
Lon(r) = D exp(ik - Ry U 610(r = Ry) ®
n

L denotes both angular momentum quantum numbers { and m, and ¢ = 1, 2 giving
two possible bispinors ¢; .. Within the Asw method the latter are constructed using
augmented spherical waves essentially as described previously [20, 26]. Of course,
other methods like LMTO [19, 27] may be used instead. A standard Rayleigh-Ritz
variational procedure now leads to the secular equation for spiral magnetic structures
[20]. We emphasize some important points characterizing this method.

First, if the wave functions 1, satisfy the generalized Bloch theorem then the
density matrix }°, v, ¥ (the sum over occupied states is assumed) will be invariant
under the action of a generalized translation. Therefore this symmetry is preserved
in the numerical iteration process. Next, in non-collinear magnets the electron states
given by (7) cannot be characterized by a definite spin projection. This leads to
a doubling of the dimension of the secular equation as compared with the case of
a ferromagnet since both up- and down-spin functions occur in the expansion, (7).
Thus, in contrast to the traditional ferromagnetic case, the calculations cannot be
carricd out separately for up- and down-spin electrons. In fact, states of the non-
magnetic or ferromagnetic system are shifted in reciprocal space by the wave vector
g and interact, leading to hybridization [17, 18, 20, 28].

We now specify the form of the staggered magnetic ficld that is required in order
to model the response of the itinerant electron system from which can be obtained
the unenhanced and enhanced magnetic susceptibilities:

h(r) =3 h-(cos(q- R,),sin(q- R,),0)- 0(|r — R,|) ©)

where 6(r) is the step function that equals unity for r smaller than the atomic
sphere radius and zero othcrwise. We emphasize that we only calculatc the spin part
of the susceptibilities and do not calculate orbital contributions. In order to simplify
the calculations further we only deal with cases for which the magnetic moment
of a given atom is paralle] to the field. Therefore, in all calculations the magnetic
structure is of the form given by (9), i.e. the magnetic moment of the nth atom should
be parallel to the vector {cos(gq- I, ),sin(g- R,),0). For non-magnetic crystals this
condition is always fulfilled because the symmetry of the unperturbed state (with no
magnetic moments) guarantees that the field given by (9) and the induced moment
are parallel.

For magnetic crystals one must ensure that this condition is fulfilled. To do this,
the calculation is performed in two steps for every value of g. In the first step the
calculations are carried to self-consistency constraining the symmetry of the magnetic
structure so that it coincides with the symmetry of the magnetic field chosen. This
field is then turned on and the response of the electrons is calculated. The symmetry
of the crystal then guarantees that the magnetic response has the configuration of the
field, as desired.

The detailed prescription for incorporating the magnetic field in both cases is
simply the replacement of the unperturbed, self-consistent potentials V,, in (3) by
V,~oh (o = -, -). The response after the first iteration now yields the unenhanced
susceptibility, x,(g) whereas a full self-consistent calculation in the presence of this
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field allows the system to relax the spin and charge densities, and hence yields the
enhanced susceptibility, x(q).

The desired wave-vector dependence of the exchange parameter I(g) is obtained
from (1) for which we now give a simple derivation that is valid for both non-magnetic
and magnetic systems; it is based on the work of Callaway and Wang [25] as well as
on that of Small and Heine [30].

The unenhanced susceptibility, by definition and calculation, describes the non-
self-consistent response, A, to an applied magnetic field in the local coordinate
system. The induced magnetic moment changes the exchange-correlation potential
leading to an effective increase of the applied field. We may suppose that the effec-
tive field consists of the applied field, k, plus the exchange—correlation contribution,
I Am, again in the local system. Hence, the seif-consistency condition is

Am = xy(h 4+ TAm) (10)
and, therefore,
X0
= . (R
Am = xh T Ing L , (11)

from which, trivially, (1) is obtained and

1 1
I(g) = —= - ——.
xolq)  x(q)
Finally we make use of the susceptibility to obtain an approximate expression of the
total energy as a function of the amplitude of the magnetic moment for any value of
the wave-vector g in the form [9]

(12)

Eq(m) = Ey(mo(@) + gooes(m = mq(a))* (13)
Here m4(q) is the self-consistent magnetic moment in the absence of a magnetic
field and E_(mgy(q)) is the total energy corresponding to this state. In passing
we point out that the total energy function E_(m} can also be obtained using the
‘fixed-moment scheme’ [31) for ¢ = 0 and with constrained calculations of the type
discussed by [20, 32] for arbitrary gq. However, in contrast to an evaluation of (13),
these calculations are rather time consuming and will not be reported here.

In closing this section we point out that in the following calcuiations we used
(as in [13]) a small magnetic field corresponding to a spin splitting of 2 mRyd. We
convinced ourselves that for fields of this order the magnetic response is linear. A
typical susceptibility deviation from a constant value does not exceed 1.5% for fields
varying from 0 to 6 mRyd (in units of the spin splitting).

3. Susceptibility and the Stoner parameter

We chose to calculate the unenhanced and enhanced magnetic susceptibilities and
Stoner parameters as functions of g for four non-magnetic and three magnetic metals,
V, Cr, Rh, Pd, Fe, Co and Ni. Experimentally the ground state of Cr is magnetic.
However, we have chosen the lattice constant such that the total energy is 2 minimum;
this results in a slightly smaller lattice constant than observed and a non-magnetic
ground state. Qur results for ¢ = 0 together with the lattice constants used and
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Table 1. Parameters of calculation and calculational results for g = 0.

. (0} (emu/imole x 10~%) 3{(0) /x0(0) I{0) (mRyd)
Lattice . AR !
Crystal  parameters Present Others' Present Others” Precseat Others’
Metal structure (au) calculation results calculation results  calculation results
\'% BCC 554 1.15 226 2349 26 264 295
5.7 153 ~ g2 2.60 S273 25
Cr BcC 53 03 1.36 1364 28 284
Rh FcC 7.24 1.13 0.61° 2.04 1.79¢ 2 244 200
Pd  FCC 7.42 5.18 ~ 712 6.85 4.463 27 259
11,20 5.00 24.5P
4,6-9.4% 268
Fe  BCC 5.27 0.21 0.37¢ 1.24 28 344 32.5%
0.zb 33.57 345
30°
Fe  FcC 6.38 0.18 1.13 17
Co FCC 6.448 0.25 0.22¢ 1.00 0 369 30¢
g8
Co Hcp 4,738 0.14 1.23 32
7.690
Ni  Fcec 6.55 0.31 0.13% 1.43 33 379 34,50
0.26¢ 33° 378
*[4]
Bl44]
i
4[13]
°[14]
T45]
5[42)

results of other calculations (for comparison) are collected in table 1. In the case of
V we also give the dependence of calculated values on the lattice constant, and in
the cases of Fe and Co on the crystal siructures.

In view of the different numerical techniques and, in some cases, the different
Jattice constants, the results are in reasonable agreement with each other. In the
case of the non-magnetic metals the agreement achieved for the Stoner parameters
is quite remarkable. However, in the case of BcC-Fe our value of J is somewhat less
than the results obtained by other authors, and in the case of FCc-Co our findings
are completely different. The rcasons for this difference are discussed below.

We do not compare the calculated susceptibilities with experimental data because
the orbital contribution which is of the order of 1-2 x10~* emu/mole [33] was not
taken into consideration in our work. However, we note that in the case of Pd,
where the spin contribution dominates, our value of the enhanced susceptibility is in
good agreement with the experimental value of 7.1 emu/mole [34]. Our calculated
susceptibilities, both unenhanced and enhanced, and the Stoner factors as functjons
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18 100

XX

Figere 1. The g dependence of unenhanced and enhanced susceptibilities and of the
Stoner parameter of V for two directions in reciprocal space. Susceptibilities are given
in units of x(0) (see table 1). The length of the g vector Is given in units of 2w /a.
®: xo; O x; Vi [, The curves for diffcrent directions may be distinguished by the
last point on the curve: for the (0,0,1) direction this is g = 1; for (1,1,1) direction this
is ¢close to 0.9,

1 100

Figure 2. The ¢ dependence of uncnhanced and enhanced susceptibilities and of the
Stoner parameter of Cr for the (0,0,1) direction. The same symbols are used as in fgure L.
Susceptibilities are given in units of the maximum value of enhanced susceptibility, Xmax.
Here Xmax = 8.03 X 10~* emu/mole,

of the wave vector ¢ are shown in figures 1-4 (and in figures 6-10).

Below we will deal with the results for the non-magnetic and the magnetic metals
separately. But some remarks on common trends seem in order first.

Firstly, it is seen that the Stoncr parameter depends on g only weakly, with the
exception of FCC-Co (see below). Secondly as is intuitive, the induced magnetic
moment in all cases leads to an effective field that is larger than the applied field and
hence to an enhanced susceptibility x that is larger than the unenhanced x,. The
real picture is, however, more complicated since self-consistency changes both the
spin-density and the charge-density, in the latter case that of all electrons including
the core electrons. In particular, for ferromagnetic FCC-Co we obtain the surprising
result that the unenhanced and the enhanced susceptibilities are practically equal
for small q¢. We emphasize that this does not mean that the first response given
by the unenhanced susceptibility leads to a self-consistent state. Rather, for full .
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Figure 3. The g dependence of unenhanced and enhanced susceptibilities and of the
Stoner parameter of Rh for the (0,0,1) direction. The same units and the same symbols
are used as in figure 1. The value of ymax is given in table 1.

100

50

{mRyd)

Figure 4. The g dependence of unenhanced and enhanced susceptibilities and of the
Stoner parameter of Pd for three directions in reciprocal space. The same units and
the same symbols are used as in figure 1. The curves for different directions may be
distinguished by the jast point on the curver for the {0,0,1) direction this is ¢ = 1, for
the (1,1,1) direction this is close to ¢ = 0.9 and for the (1,1,0)-direction this is close to
0.7. The value of \max is given in table 1.

self-consistency, a number of further iterations is nceded which do not increase the
magnetic moment. Thirdly, as functions of ¢, the two susceptibilitics have common
trends: weak extrema in x, show up as pronounced extrema in x, and, in most cases,
where one is convex (concave) the other is too.

3.1. Non-magnetic V[ Cr, Rh and Pd

Figures 2 and 4 show that the susceptibility enhancement is strong for the cases of Cr
and Pd. For Cr the maximum of the enhancement corresponds to antiferromagnetic
configurations and reaches the value of 129 at ¢ = (0,0,1) (in units of 2n/a
throughout). In the case of Pd, the enhancement is maximal for a ferromagnetic
configuration (g = 0) and reaches the value of 6.85. For other vajues of g the
enhanced x quickly approaches the unenhanced x,.

The situation shown in figures 1 and 3 for V and Rh is different; the enhancement
is much weaker and x is a non-monotonous {unction of g. In the case of Rh one can
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still see a tendency of decreasing enhancement for increasing g, but this is no longer
true of V, for which x has roughly the same value at ¢ = 0 and ¢ = (0,0,1).

An obvious explanation of the strong enhancement obtained for antiferromagnetic
configurations of Cr and a ferromagnetic configuration of Pd is the fact that in these
cases magnetic states ‘lie nearby’; in fact a rather small increase in the lattice constants
in both cases leads to transitions to magnetic states, antiferromagnetic for Cr [33]
and ferromagnetic for Pd [34]. The total energy, correspondingly, has a rather flat
minimum as a function of the amplitude of the magnetic moment m at m = 0,
which, because of (13), leads to large values of the magnetic susceptibility,

This is different in the case of Rh where a quasistable ferromagnetic state is found
for very large atomic volumes [35], whereas in V ferro- and antiferromagnetic states
seem to coexist {36] for large volumes. This property is obviously correlated with the
type of g dependence of the susceptibilities of these metals.

Physically, the susceptibility behaviour described above for Cr and Pd has real
implications. Indeed, we know that experimentally Cr [37, 38] is basically antiferro-
magnetic in its ground state, whereas Pd is characterized by strong spin fluctuations
[91 which, on the basis of our results for the susceptibility, most likely possess strong
ferromagnetic short-range order.

For Pd and V we now comparc our static susceptibility for g parallel to (0,0,1}
with the results of other authors [4] and [14]. In the case of Pd, the form of our
x(4q) curve is very close to that of [4]. Both calculations give a sharp maximum at
g = 0, decreasing fast for small ¢ and changing relatively little for large g. The value
of the enhancement obtained by [4] is somewhat higher than in our case. However,
this is a result of an arbitrary scaling of the unenhanced susceptibility before the
integral equation for the enhanced susceptibility is sclved, and these values cannot be
compared directly. We also note that in [4] the vector ¢ defines a continuous change
of the applied field, in contrast to our case in which the fields are supposed to be
uniform within each atomic sphere.

It appears that this latter point can explain the substantial quantitative differ-
ence between the results obtained for V in our calculations and in [4]. Both cal-
culations give approximately the same values for the susceptibility at ¢ = 0 and a
non-monotonous behaviour of x with increasing g. However, the decrease of both
susceptibilities, and the enhancement reported in [4] for large ¢ were not obtained
in our caleufations.

Jarlborg [14], who, like us, used fields uniform within each atomic sphere, carried
out calculations of the enhancement for three values of ¢ = (0,0, g) where ¢ = 0,
0.5 and 1. In agreement with our calculations, by comparing the enhancement for
g = 1 with that for ¢ = 0 one recognizes a strong decrease in the case of Pd and a
small increase in the case of V. However, our calculations do not confirm the linear
g dependence of the enhancement for V and Pd supposed by Jarlborg [14].

To estimate the extent of the anisotropy of the susceptibility and of the exchange
parameter, calculations for V and Pd were carried out for different directions in
reciprocal space (figures 1 and 4). For both metals we found the parameter [ to be
almost isotropic, whereas the anisotropy of the susceptibility was quite pronounced.
However, in the case of Pd (figure 4), the overall behaviour of the susceptibility,
ie. its sharp maximum at ¢ = 0 and its monoronous decrease with increasing g is
common for all directions of g. This is different for V (figure 1) where in the (0,0,1)
direction the susceptibility possesses a maximum at ¢ = 0 in contrast to the (1,1,1)
direction in which the susceptibility is a maximum at the Brillouin-zone boundary.
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Above, we briefly commented on the weak g dependence of the Stoner parameter,;
this suggests that the exchange parameter can indeed be treated as a local atomic
property, independent of ¢, having values in the range of 25 to 30 mRyd for all
atoms. This is in good agreement with Himpsel [16] who reached this conclusion
on the basis of experimental information about magnetic 3d crystals. From our
calculations it appears that this is also so for the non-magnetic 3d and 4d crystals.

The weak dependence of f on g allows us to trace back the strong g dependence
of the enhanced susceptibility to the g dependence of the unenhanced susceptibility.
For g = 0 it is well known that x, is connected with a property of the unperturbed
state, namely the density of states at the Fermi energy, because in this case the
applied field lifts the spin degencracy of the bands, leading to a repopulation of
the shifted spin-up and spin-down bands at the Fermi energy. For non-vanishing ¢
the situation is substantially more complicated because the change of the electronic
structure cannot be reduced merely to shifted states. In the case of Pd we see that
the high density of states at the Fermi energy does not lead to a high unenhanced
susceptibility for large q. As pointed out in section 2, for g # 0, states of opposite
spin projection are separated by the vector g in reciprocal space and, in general, they
hybridize. Bonding states have lower energy and possess a positive spin projection
on the local direction of the magnetic field; antibonding states have higher energy
and possess a megative spin projection. However, those states close to the Fermj
energy in zero field that become antibonding states will be emptied in a finite field.
If such states exist in substantial numbers, they will lcad to a noticeable increase of
the local magnetic moment and to a large unenbanced susceptibility. An example of
this is the case of Cr [39] for which there arc large (‘nesting’) pieces of the Fermi
surface separated by the vector g ~ (0,0,1) and, as a result, the susceptibility x,
for g = (0,0,1) is of the order of three times higher than it is for g = 0.

3.2. Longitudinal susceptibifity of Fe, Co and Ni

We now turn to a discussion of our results shown in figures 5-10 which concern
the metals Bcc-Fe, FCC-Fe, FCc-Co, MCP-Co and FCC-Ni. We emphasize again that
we now determine the susceptibilities x and x,, and the Stoner parameter in the
magnetic states as described in section 2 and not in non-magnetic states.

25 |-
= ®
1S .
Ny a,
"'E—-S' a
w igaaass&s
-5 '-‘_.-'
g 05 1
q

Figure 5. The total energy as a function of g for the (0,0,1) direction. ®: Fcc-Fe; A
Bcc-Fe; O: Fee-Co; O nep-Cop Vi N
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1 4 100

Figure 6. The ¢ dependence of unenhanced and cnhanced susceptibilities, of the Stoner
parameter and of the local magnetic moment of Fce-Fe for the (0,0,1) direction. The
same units and the same symbols are used as in figure 1 for susceptibilities and for
the Stoner parameter. [: magnetic moment given in units of mo{0). Here xmax =
2.18 x 10~* emu/mole mp{0) = 2.55up.

Y — +—1 100
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Figure 7. The g dependence of unenhanced and enhanced susceptibilities, of the Stoner
parameter and of the local magnetic moment of BCc-Fe for the (0,0,1) direction, The same
units and the same symbols are used as in figure 6. Here xpmax = 3.50% 10—* emu/mole
and mo(0) = 2.13pp.

We begin with figure 5 which shows the total energy as a function of the wave
vector g thus giving information about the state of ‘equilibrium’ at a given q. For
Fcc-Fe detailed results have been obtained previously by means of LMTO and ASW

calculations [19, 20], Ni and BcC-Fe have also been the objects of previous discussions
[32D), but our results for Co are new.

For Fcc-Fe the magnetic moment decreases slowly with mcreasmg g, attaining at
g = 1 about 70% of its maximal value, The total energy of Fcc-Fe is minimized for
g = 0.6. Therefore, in agreement with experiments [40] and previous calculations
[19, 20], the ground state of FCC-Fe is non-collinear; however, in the four other cases
it is ferromagnetic. For Bcc-Fe (figure 7) the magnetic moment is approximately
unchanged up to g = 0.3 and then decreases for increasing ¢; the larger g, the faster
its decrease. For ¢ = 1, different methods give different results [32] for the value of
the self-consistent magnetic moment, a fact that is explained by detailed investigations
[32]; these showed that for values of g close to one there are two states, magnetic
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Figure 8. The g dependence of unenhanced and enhanced susceptibilities, of the Stoner
parameter and of the tocal magnetic mement of Fee-Co for the (0,0,1) direction. The
same units and the same symbols are used as in figure 6. Here Xmax = 8.83 x

" 10—% emu/mole und mo(0) = 1.54up.
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KmRyd)

Figure 9. The g dependence of unenhanced and enhanced susceptibilities, of the Stoner
parameter and of the local magnetic moment of Hcp-Co for the (0,0,1) direction. The
same units and the same symbols are used as in figure 6 for susceptibilitics, for the
parameter [ and for the magnetic momeat, The value of g is given in units of 2w /e,
Here xmax = 7.36 x 10~*% emu/mole and mo(0) = 1.54pp.

and non-magnetic, for which the difference in the total energy is very small. The
value of the self-consistent magnetic moment reacts sensitively to the details of the
calculational procedure, the choice of the lattice constant, the basis set etc. Our
calculations showed a pronounced instability at ¢ = 1 a result which needs further
investigation,

For the cases of Fcc-Co and Ni we obtain the important result that starting at
q = 0.6 for Co and g = 0.5 for Ni the magnetic moment vanishes, i.c. for large
values of g the self-consistent state is non-magnetic. Since the function m(g) contains-
information about the dependence of the local magnetic moments on the angles
between the spins of adjacent atoms, our finding is important for finite-temperature
properties of itinerant-electron magnets. In particular, it implies that the assumption
that a disordered local moments state exists [41], Le. that the values of the local

moments are independent of the interspin angles, is not valid for Fcc-Co and Ni,
even for qualitative considerations.
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Figure 10. The g dependence of unenltanced and enhanced susceptibilities of the Stoner
parameter and of the local magnetic moment of Fec-Ni for the (0,0,1) direction. The same
units and the same symbols are used as in fgure 6. Here xmax = 4.19%10™* emu/mole
and mp(0) = 0.5%up.

In the case of HcP-Co the magnetic moment decreases slowly with increasing g,
retaining 60% of its ferromagnetic value at ¢ = 0.9, However, at g = 1.0 the state
of lowest energy Is non-magnetic,

The non-self-consistent and self-consistent response of the local atomic moments
to a small applied field, as well as the values of the exchange parameters, I, are
shown jn figures 6-10 as functions of ¢. In all five cases the susceptibility is minimal
for the ferromagnetic configuration or {or configurations close to it and the values of
the enhancements are very small. According to (13), this shows that a given change
of the amplitude of the magnetic moment costs more in the ferromagnetic case than
in the case of configurations having large q.

If we suppose that a deeper minimum of the total energy of the self-consistent
state, E_ (mg(g)), corresponds to a steeper parabola in (13), the minimum of the
susceptibility for g = 0 may be considered to be a natural result for Co, Ni and
BCC-Fe because of the ferromagnetic ground state of these metals. However, FCC-Fe
has a non-collinear ground state and, hence, this explanation is not valid for it. We
believe, instead, that the following is important: the ferromagnetic 3d metals adjust
their Fermi energies in the self-consistent states such that the state densities at the
Fermi energy are, in general, low. As a result, the susceptibility is not high, even
when the ferromagnetic configuration does not correspond to the minimum of the
total energy. For non-collinear states (g 7 0), however, we previously discussed
another mechanism that increases the susceptibility by hybridization.

In the cases of FCC-Fe and Bcc-Fe the susceptibility has a clear tendency to
increase with increasing g. This is quite different for Ni and Fcc-Co, for which the
enhanced susceptibility has a sharp peak (figures 8 and 10) near those values of ¢
that mark the boundary between the magnetic and non-magnetic states. For HCp-
Co (figure 9) the borderline between magnetic and non-magnetic states is close to
the Brillouin-zone boundary, and again we have a sharp increase of the enhanced
susceptibility here. Thus, near these g values, there are two different self-consistent
states with nearly the same total energy giving rise to a very flat minimum of the
total energy as a function of the magnetic-moment length, m. Any consistent theory
of finite-temperature properties of itinerant-clectron magnets must take into account
the variation of the energy of the self-consistent state with ¢ (figure 5) as well as
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the corresponding variation with local moment size. The large peak in the enhanced
susceptibility for Ni and Co close to the boundary between the magnetic and non-
magnetic states will result in an important contribution to the partition function of
the crystal due to larger statistical weights of these states.

We return now to a discussion of the ¢ dependence of the Stoner parameter,
I. It is quite remarkable that in view of the pronounced ¢ dependences of the
susceptibilities, the quantity [ is as constant as it js, except in the aforementioned
case of FCC-Co. In agreement with [14] the values of I for Fe, Co and Ni, for g not
too close to 0, have a tendency to be higher than for the other metals considered
here,

On the basis of these results we repeat that the Stoner parameter can, for many
practical purposes, be treated as a constani characterizing a particular atom. Sub-
stantially lower values of [ obtained for {erromagnetic configurations of FcC-Fe and
FCC-Co show, however, that (10)-(12) fail to describe the connection between unen-
hanced and enhanced susceptibilitics in these cases. We relate this difficulty to the
fact that in (10) the effects of a charge density disturbance caused by the magnetic
field are neglected. We suggest the following explanation for the fact that this diffi-
culty only occurs for configurations close to ferromagnetic, and for magnetic crystals.
In this case, applying a field leads to transitions of some electrons from down-spin
states to up-spin states. If there is a large difference between the initial and the
final states, the charge distribution may be noticcably disturbed. For Fe and Co the
difference of the spin-up and spin-down states at the Fermi energy can be substantial
because of the large magnetic moment of the ferromagnetic state and, consequently,
the large exchange splitting of the spin-up and spin-down bands. Note that for non-
magnetic crystals this splitting is zero and for Ni it is relatively small. None of these
difficulties occur for large g, for which there is a strong hybridization of the spin-up
and spin-down states. In this case the ficld will not cause the transition of electrons
from occupied states to empty states; it leads, instead, to an increase of the positive
spin projection in the bonding states and of the negative projection in the antibonding
states, and a sizeable charge-density rearrangement does not take place.

In closing we want to emphasize that there are two ways to introduce the pa-
rameter [ for a magnetic crystal, In the first case (see, e.g., [30, 42]) the parameter
I is considered to be a coefficient of proportionality between the value of the mag-
netic moment and the value of the corresponding exchange field, where the exchange
field characterizes the difference in the potentials experienced by the electrons with
opposite spin projections. A perturbation treatment [42] or a simplified variational
approach [12, 13] allows an estimate of / based on the electronic structure of non-
magnetic states. The value of [ so determined serves 10 investigate the instability of
the non-magnetic state.

An alternative way to introduce the parameter I (see, e.g., [7]) is to consider it as
a coefficient of proportionality, not between the magnetic moment and the exchange
field, but between deviations of these quantities from their equilibrium values. This
value of I serves to calculate the enhanced susceptibility of a magnetic crystal and is
estimated in the present papcr.

If we suppose the magnetic moment and the exchange field are strictly propor-
tional, then both values of [ are the same. Our calculations show that this supposition
holds for non-collinear magnetic configurations. However, for a ferromagnetic config-
uration, the parameter [ shows, in some cases, ‘an instability” which we explain by a
charge density variation caused by the change of the magnetic moment. The effect of
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this charge transfer depends sensitively on the wave functions of the electron states
with energies close to the Fermi level. Therefore, the instability shows up differently
for different metals, depending on the Jattice structures and even on the lattice spac-
ings. In our calculations, this effect appears to be especially strong for Fcc-Co, where
a small difference between the enhanced and unenhanced susceptibilities leads to a
value of I close to zero.

Note, that in [7] a formula was derived for the exchange parameter of the ferro-
magnetic state. For Fe and Ni this formula gives results which are very close to the
results of our calculations, However, for Co the difference is large. We think that
simplifications made in the derivation of the formula are unjustified and do not ac-
count for peculiarities of the charge and spin self-consistency of the electronic states
of FCC-Co in a magnetic field.

4. Conclusions

We applied ab initio electronic-structure calcutations to study basic physical pictures,
in this case for a number of transition metals that were chosen to demonstrate
various different but typical properties. After a brief look at the theoretical basis we
concentrated on the unenhanced and the enhanced static but wave-vector dependent,
magnetic susceptibilities and the Stoner-exchange parameters for the non-magnetic
metals V, Cr, Rh and Pd, and the magnetic metals Fe, Co and Ni, all at zero
temperature, :

In the first group we contrasted the susceptibility behaviour of Cr (in theoretical
equilibrium, with a slightly decreased lattice constant) with that of Pd, on one hand,
these being near an antilerromagnetic and a ferromagnetic instability, respectively,
with V and Rh, on the other hand, which show no such features. In all these cases
the Stoner parameter, f(q), was found to be nearly constant and can therefore be
treated as an atomic property.

Our results for the magnetic metals contrasted clearly the two forms of Fe: FCc-Fe
having a non-collinear and Bcc-Fe a ferromagnetic ground state. For Fcc-Co and Ni
the self-consistently-determined magnetic moments were found to vanish for values
of g larger than 0.6 and 0.5, respectively. This, in our opinion, makes a disordered
local moment state, which has repeatedly been postulated [41, 43], highly unlikely
in Co and Ni. Furthermore, the large peak in the enhanced susceptibility near the
values of ¢ obtained and interpreted by us will carry large statistical weight in the
partition function. This must, in our opinion, be taken into account by any theory
for finite-temperature properties of itinerant-electron magnets. Finally, the Stoner
parameter, I{q), in the magnetic metals, and determined in the magnetic states (and
not in the often-used non-magnetic states), was found to be nearly constant for values
of g that were not too small. Hence, it can again be treated as an atomic property.
However, for g near 0, the ferromagnetic regime, the Stoner parameter calculated
shows quite a peculiar behaviour, especially for Fcc-Co; a behaviour that we tried to
relate to properties of the electronic structure,
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