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AbalraeL A lheorckal basis is given for the determination of the salic, but wave-vector 
dependent, magnetic susceptibility (unenhanced and enhanced). It i s  based on the local 
density approximalion and is applied to the transition metals V, Cr. Rh, Pd as well as Fe, 
CO and Ni. I n  the On1 group we conlrast the susceptibility behaviour o f  Cr wilh that of 
Pd both of which are near a magnelic instability, and compare these behaviours with that 
of V and Rh. In al l  cases the Stoner parameler I ( * )  is obtained and discussed. Our 
results for rhe magnetic nielals in the second group clearly distinguish the two forms OF 
Fe. FCC-F~ having a non-collinear and =-Fe a ferromagnetic ground slale. For Fcc-CO, 
FKP-CO, and Ni the self-mnsislently delemined magnetic moments wre found to vanish 
for q larger than 0.6, 0.9 and 0.5 in (0, 0, q )  ( z s / a ) ,  respectively. Near these values of 
the wave veclor the enhanced susceptibility peaks suongly. Our results for the magnetic 
susceptibilities are compared with results of Olher calculations. 

1. Introduction 

The determination of the wave-vector and frequency dependent magnetic susceptibil- 
ities of metals by first-principles calculations is of considerable importance and has, 
consequently, led to a great number of investigations [l-51. The calculated quanti- 
ties can be directly related to experimental data 16, 71, but, more importantly, they 
play a central role in theoretical descriptions of interacting electron systems [5, 8, 
91. Although some limited amount of physical information is contained in the un- 
enhanced susceptibility [lo, 111. it is the enhanced susceptibility that describes the 
physical system completely [6, 91. 

Several techniques for calculating the wave-vector and frequency dependent, en- 
hanced magnetic susceptibility exist [l, 2, 41. They have many features in " n o n  
and we may briefly comment on some of them. First, the electronic band structure 
for a crystal with no external magnetic field applied is needed to describe the state 
of the system. Second, the enhanced susceptibility is obtained as the solution of an 
integral equation that is derived by perturbation theory. The integral equation itself 
is solved using approximations. Third, the calculational schemes need, in addition 
to computer codes for determining the band structure, rather advanced programs for 
the evaluation of the susceptibility. Fourth, the mathematics is quite involved so for 
realistic calculations [I, 21 severe approximations are necessary; thus, for instance, 
only d bands were taken into account in the calculation of the magnetic response 
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by Cooke et a1 [l], and Callaway et a1 [2] neglected the wave function overlap at 
different sites. 

The situation is considerably simpler for the case of the zero-frequency uniform 
susceptibility because in this case the response of the electronic band structure to 
a small applied magnetic field can be easily calculated [12-141 thus allowing both 
a determination of the enhanced static susceptibility 113, 141 and tests of approx- 
imate calculational schemes (131. I t  is also possible to obtain limited information 
on the wave-vector dependence of the static, enhanced susceptibility by simulating a 
staggercd magnetic field using supercell calcdations (141. As the supercell contains 
periodically repeated fragments of both the lattice and the magnetic field, their peri- 
ods should be connected by a simple relation which will not result in an unrcasonably 
large supercell. Thus any practical calculatiom cannot be carried out for magnetic 
fields incommensurate with the lattice, or for fields having a period many times larger 
than the period of the lattice. Therefore, the supercell approach is not suitable for 
obtaining the susceptibility as a continuous function of the wave vector. 

A rather recent developmcnt in self-consistent field calculations makes possible 
an easy determination of both the enhanced and unenhanced zero-frequency mag- 
netic susceptibility for any wave vector (including those incommensurate with the 
lattice). This is based on the generalized translational symmetry of the one-electron 
Hamiltonian of a spiral magnct as discussed some time ago by Herring [8]; this is 
also connected with the work of Korcnman and Prange [15] as well as with that of 
Haines er a1 [17]. Herring’s theory was applied to modern computational methods 
by one of us [18] and enables thc calculations to be done self-consistently without 
resorting to any supercell geometry. A number of applications to real problems using 
spiral magnetic configurations [19, 201, have shown the efficiency and accuracy of this 
approach. 

The objects of our calulations are the zero-frequency but wave-vector dependent 
unenhanced, xo, and enhanced, x, magnetic susceptibilities of several transition met- 
als. The standard relation [6] connecting these quantities for paramagnetic metals 
is 
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(1) X = -  XO 
I - - I x o  

where the parameter I is often referred to as the exchange or Stoner parameter. In 
many cases this parameter is treated as a constant independent of the wave vector q, 
but a number of authors (3, 21, 221, did consider its wave-vector dependence. Thus, 
Vosko et a1 [22] suggested a theoretical approach to its q-dependence but did not 
apply it to a particular calculation, and in [3, 211 the wave-vector dependence of the 
exchange parameter was chosen arbitrarily to obtain a better description of neutron 
scattering experiments. Our calculations allow an estimate of the q-dependence of I 
on the basis of a first-principles approach. We will return to (1) in the next section 
where we give a simple derivation for both non-magnetic and magnetic systems. 

The paper is organized as follows. In section 2 the theoretical background and 
some calculational details are described. Section 3 is devoted to calculations of the 
susceptibilities for the elemental metals V, Cr, Rh and Pd as well as Fe, Co and Ni, 
and in section 4 we summarize our results. 

2. Calculational technique 

Ib make this paper reasonably self-contained we give a brief description of the main 
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ideas underlying the theoretical method, stressing those points that distinguish it 
from conventional band-structure theory. At the basis is the local approximation 
to exchange and correlation [23] and the augmented spherical wave method (ASW), 
which are employed to carry out the sei€-consistent band-structure calculations [24]. 
This method was generalized by Uhl cl a1 [20] to enable the treatment of spiral spin 
configurations. 

The effective single-particle Hamiltonian for spin-polarized electrons forming a 
non-collinear magnetic structure may be witten as [18, 201 

where 

is a potential in the local atomic frame of reference which is defined by setting 
the z axis parallel to the direction of the atomic moments. We shall call this the 
local coordinate system which may, in general, be different for each atom and which 
must be distinguished from the single, global coordinate system. The potentials 
V, ( U  = +,-) are unambiguously given in the local coordinate system by means 
of functional derivatives [20, 25, 261, and the standard spin-? rotation matrices U 
determine the transformation between the global coordinate system and the atomic 
systems [20]. 

A spiral magnetic structure is dclined by 

m, = m ( c o s ( q .  R,)sin zl,sin(q.R,)sinzl,coszP) (4) 

where m, is the magnetic moment of the nth atom and ( q  . R,) and t9 are polar 
coordinates. It may be shown easily IS, 181 that the Hamiltonian (2) commutes with 
the operator {an(q)lRn} of a generalized translation defined by 

The quantity +(r )  is a bispinor function, and the operator {a,(q)JR,,} combines 
a space translation by the vector R, with a spin rotation of ( q  . R,) about the 
global axis. These generalized translations form an Abelian group isomorphic with 
the group of ordinaly space translations by the vector It,. Therefore, the irreducible 
representations of both groups coincide and for the eigenhnctiom of the Hamiltonian 
(2), there exists a generalized Bloch theorem 

I~ , (n ) lR , Idd~)  = exp(- ik .  Rn)?lk(v) (6)  

where the vectors 12 lie in the first Brillouin zone which is defined in the usual way 
by the vectors R,. This means that for the actual ca!culations one only needs the 
chemical unit cell, and not a supercell. 

A general starting point for a band-structure calculation is expansion of the Bloch 
bi-spinor function in the form 
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where, because of (6) ,  'I),,, may be written as a lattice sum 
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QLok(r )  = C e x p ( i k .  R,,)U:+,,,(r - E, )  (8) 
n 

L denotes both angular momentum quantum numbers 1 and m, and cr = 1, 2 giving 
two possible bispinors dLo. Within the ASW method the latter are constructed using 
augmented spherical waves essentially as described previously [20, 261. Of course, 
other methods like LMTO [19, 271 may be used instead. A standard Rayleigh-Ritz 
variational procedure now leads to the secular equation for spiral magnetic Structures 
[20]. We emphasize some important points characterizing this method. 

First. if the wave functions & satisfy the generalized Bloch theorem then the 
density matrix Ck lc.k+z (the sum over oceupied states is assumed) will be invariant 
under the action of a generalized translation. Therefore this symmetry is preserved 
in the numerical iteration process. Next, in non-collinear magnets the electron states 
given by (7) cannot be characterized by a definite spin projection This leads to 
a doubling of the dimension of the secular equation as comparcd with the case of 
a ferromagnet since both up- and down-spin functions occur in the expansion, (7). 
Thus, in cnntrast to the traditional ferromagnetic case, the calculations cannot be 
carried out separately for up- and down-spin elenrow. In fact, states of the non- 
magnetic or ferromagnetic system are shifted in reciprocal space by the wave vector 
q and interact, leading to hybridization [17, 18, 20, 281. 

We now specify the form of the staggered magnetic field that is required in order 
to model the response of the itinerant electron system from which can be obtained 
the unenhanced and enhanced magnetic susceptibilities: 

h ( ~ )  = 1 1 .  ( c o s ( q .  R,,), sin(q.  R"),  0) .  O(lr - E,]) (9) 
" 

where S(r) is the step function that equals unity for r smaller than the atomic 
sphere radius and zero othcnvise. We emphasize that we only calculatc the spin part 
of the susceptibilities and do not calculate orbital contributions. In order to simplify 
the calculations further we only deal with cases for which the magnetic moment 
of a given atom is parallel to the field. Therefore, in all calculations the magnetic 
structure is of the form given by (9), i.e. the magnetic moment of the nth atom should 
be parallel to the vector (cos(q.n,),sin(q.n,),O). For non-magnetic crystals this 
condition is always fulfilled because the symmetry of the unperturbed state (with no 
magnetic moments) guarantees that the field given by (9) and the induced moment 
are parallel. 

For magnetic crystals one must ensure that this condition is fulfilled. IIb do this, 
the calculation is performed in two steps for every value of q. In the first step the 
calculations are carried to self-conristency constraining the symmetry of the magnetic 
Structure so that it coincides with the symmetry of the magnetic field chosen. This 
field is then turned on and the response of the electrons is calculated. The symmetry 
of the crystal then guarantees that the magnetic response has the configuration of the 
field, as desired. 

The detailed prescription for incorporating the magnetic field in both cases is 
simply the replacement of the unperturbed, self-consistent potentials Vu in (3) by 
V,-crh ( 0  = +, -). The response after the first iteration now yields the unenhanced 
susceptibility, x o ( q )  whereas a full self-consistent calculation in the presence of this 
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field allows the system to relax the spin and charge densities, and hence yields the 
enhanced susceptibility, x.(q). 

The desired Wave-vector dependence of the exchange parameter I ( q )  is obtained 
from (1) for which we now give a simple derivation that is valid for both non-magnetic 
and magnetic systems; it is based on the work of Callaway and Wang 1291 as well as 
on that of Small and Heine [30]. 

The unenhanced susceptibility, by definition and calculation, describes the non- 
self-consistent response, Ana, to an applied magnetic field in the local coordinate 
system. The induced magnctic moment changes the exchange-corrclation potential 
leading to  an effective increase of the applied ficld. We may suppose that the effec 
tive field consists of the applied field, h,  plus the exchangexorrelation contribution, 
IAm,  again in the local system. Hence, the self-consistency condition is 

Am = xo(h  + lam) (10) 
and, therefore, 

from which, trivially, (1) is obtained and 

Finally we make use of the susccptibility to obtain an approximate expression of the 
total energy as a function of thc amplitude of the magnetic moment for any value of 
the wave-vector q in the form [9] 

Here mo(q) is the self-consistent magnetic moment in the absence of a magnetic 
field and E q ( m o ( q ) )  is the total energy corresponding to this state. In passing 
we point out that the total energy function E p ( m )  can also be obtained using the 
'fixed-moment scheme' 1311 for q = 0 and with constrained calculations of the type 
discussed by [20, 321 for arbitrary q. However, in contrast to an evaluation of (13), 
these calculations are rather time consuming and will not be reported here. 

In closing this section we point out that in thc following calculations we Used 
(as in [13]) a small magnetic licld corresponding to a spin splitting of 2 mRyd. We 
convinced ourselves that for liclds of this order the magnetic response is linear. A 
typical susceptibility deviation from a constant value does not exceed 1.5% for fields 
varying from 0 to 6 mRyd (in units of the spin splitting). 

3. Susceptibility and the Stoner parameter 

We chose to calculate the unenhanced and enhanced magnetic susceptibilities and 
Stoner parameters as functions of q for four non-magnetic and three magnetic metals, 
V, Cr, Rh, Pd, Fe, CO and Ni. Experimentally the ground state of Cr is magnetic. 
However, we have chosen the lattice constant such that the total energy is a minimum; 
this results in a slightly smaller lattice constant than observed and a non-magnetic 
ground state. Our results for q = U together with the lattice constants used and 
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Tablr 1. Parameters of calculation and calculalional T~SUIIS for q = 0. 

~ ( 0 )  (cniulmole x I@) x(O)/xo(o) I(0) (mW) lattice 
Clystal parameters Preren1 Others' Presenl Others' P-en1 Others' 

Metal s l ~ c t u r c  (au) calculation results calculauon results calculation results 

V B c c  5.54 
5.7 

5 3  

7.24 

7.42 

1.15 
1.53 

0.3 

1.13 

5.18 

.-, 1.6' 
2.26 
260 

1.36 

2.04 

6.85 

2.34d 26 
273' 25 

1.36d 28 

1.7gd 22 

4.4hd 27 
5.0* 
4.6-9.4. 

28 

2hd 29g 

Cr 

Rh 

Pd 

BCC 

FCC 

FCC 

28d  

24d 2Ib 

25d 
24.5b 
266 

34d 32Sb 
33.5' 3w 
30' 

O.6lb 

- 7.1' 
11.2b 

Fe BCC 5.27 0.21 0.37< 
0.P 

1.24 

Fe 

C O  

6.88 

6.448 

0.18 

0.25 

1.13 

1.00 

17 

0 

FCC 

FCC 0.22' 36d 3ff 
36s 

CO 4.738 
7.690 

6.55 

0.14 L .w HCP 32 

0.13b 
0.2hC 

37d 3 4 9  
33= 37s 

Ni FCC 0.31 1.43 33 

~ 4 1  

~ 7 1  
di131 
7141 
~ 4 5 1  
9421 

b1441 

results of other calculations (for comparison) are collected in table 1. In the case of 
V we also give the dependence of calculated values on the lattice constant, and in 
the cases of Fe and CO on the crystal structures. 

In view of the different numerical techniques and, in some cases, the different 
lattice constants, the results are in reasonable agreement with each other. In the 
case of the non-magnetic metals the agreement achieved for the Stoner parameters 
is quite remarkable. However, in the case of BCC-Fe our value of I is somewhat less 
than the results obtained by other authors, and in the case of FCC-CO our findings 
are completely different. The rcasons for this difference are discussed below. 

We do not compare the calculated susceptibilities with experimcntal data because 
the orbital contribution which is of the order of 1-2 x I O - ~  emu/mole [33] was not 
taken into consideration in our work. However, we note that in the case of Pd, 
where the spin contribution dominates, our value of the enhanced susceptibility is in 
good agreement with the experimental value of 7.1 emuimole (341. Our calculated 
susceptibilities, both unenhanced and enhanced, and the Stoner factors as functions 
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0-0 
0 0.5 1 

4 
FI@re 1. The q dependence of unenhanced and enhanced susceptibilities and of the 
Stoner parameter of V for two directions in reciprocal space. Susceptibilities are given 
in units of ~ ( 0 )  (see table 1). The length of tlie q vector is given in units of 2a/a. 
a: xo; 0: x; V: I .  The curves [or diKcrent directions may be distinguished by the 
last point on tlie curve: for the (0,0,1) direction [his is q = 1; for (1,lJ) direction this 
is close to 0.9. 

0 0.5 1 

q 
Feure 2. The q dependence of uncnlianced and enlianced susceptibilitia and of lhe 
Stoner paramercr oCCr for the (0,0,1) direction. The same symbols are used as in figure 1. 
Su~ceptibililies are given in units of the maximum value of enhanced susceptibility, xmar. 
Here zmar = 8.03 x lo-' emuimole. 

of the wave vector q are shown in figures 1 4  (and in figures 6-10), 
Below we will deal with the results for the non-magnetic and the magnetic metals 

separately. But some remarks on common trends seem in order first. 
Firstly, it is seen that the Stoner parameter depends on q only weakly, with the 

exception of FCC-CO (see below). Secondly as is intuitive, the induced magnetic 
moment in all cases leads to an effective field that is larger than the applied field and 
hence to an enhanced susceptibility x that is larger than the unenhanced xo. The 
real picture is, however, more complicated since self-consistency changes both the 
spin-density and the charge-density, in the latter case that of all electrons including 
the cote electrons. In particular, for ferromagnetic FCC-CO we obtain the surprising 
result that the unenhanced and the enhanced susceptibilities are practically equal 
for small q. We emphasize that this does not mean that the first response given 
by the unenhanced susceptibility leads to a self-consistent state. Rather, for full 
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1 *  I 100 

0 , . , , i . , , .  0 
0 0.5 1 

4 

Figure 3. The q dependence of unenhanced and enhanced susceptibililies and or the 
Stoner parameter of XI1 Cor thc (0,O.l) direction. The same uniu and the Same symbols 
are uscd as in Ogure 1. The value of ,ymlx is given in table 1. 

x 
2 

1 

0.5 

0 

100 

T x 
50 o= E 
't 

0 
0 05 1 

9 
Figure 4. The g Jcpendencc of unenhanced and enhanced susceptibililies and of lhe 
Stoner parameter of I'd for three direclions in reciprocal space. The same unils and 
the Same symbols are uscd as in figure 1. The cumes for differen1 directions may be 
distinguished by the last point on tlie CUNC for the (O,O,l) direclion this is q = 1. for 
the (1,IJ) direction this is close to q = 0.9 and for the (1,l.O)-direction this is close 10 
0.7. The value of \m,ax is given in  table 1. 

self-consistency, a number of lurther iterations is needed which do not increase the 
magnetic moment. Thirdly, as functions of q, the two susceptibilitics have common 
trends: weak extrema in xo show up as pronounced extrema in x, and, in most cases, 
where one is convex (concave) the other is too. 

3.1. Non-magneiic l( Cc Rh nnd Pd 

Figures 2 and 4 show that the susceptibility enhancement is strong for the cases of Cr 
and Pd. For Cr the maximum of the enhancement corresponds to antiferromagnetic 
configurations and reaches the value of 12.9 at q = (0,0,1) (in units of 3n/a 
throughout). In the  case of Pd, the enhancement is maximal for a ferromagnetic 
configuration (p = 0) and reaches the value of 6.85. For other values of p the 
enhanced x quickly approaches the  unenhanced xo. 

The situation shown in figures 1 and 3 for V and Rh is differen< the enhancement 
is much weaker and x is a non-monotonous function of q. In the case of Rh one can 
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still see a tendency of decreasing enhancement for increasing q, but this is no longer 
true of V, for which 

An obvious explanation of the strong enhancement obtained for antiferromagnetic 
configurations of Cr and a ferromagnetic configuration of Pd is the fact that in these 
cases magnetic states ‘lie nearby’; in fact a rather small increase in the lattice constan’m 
in both cases leads to transitions to magnetic states, antiferromagnetic for Cr [33] 
and ferromagnetic for Pd [34]. The total energy, correspondingly, has a rather flat 
minimum as a function of the amplitude of the magnetic moment m at m = 0, 
which, because of (13), leads to large values of the magnetic susceptibility. 

This is different in the case of Rh where a quasistable ferromagnetic state is found 
for very large atomic volumes [35], whereas in V ferro- and antiferromagnetic states 
seem to coexist [36] for large volumes. This property is obviously correlated with the 
type of q dependence of the susceptibilities of these metals. 

Physically, the susceptibility behaviour described above for Cr and Pd has real 
implications. Indeed, we know that experimentally Cr [37, 381 is basically antiferro- 
magnetic in its ground state, whcreas Pd is characterized by strong spin fluctuations 
[9] which, on the basis of our results for the susceptibility, most likely possess strong 
ferromagnetic short-range order. 

For Pd and V we now comparc our Static susceptibility for q parallel to (O,O, 1)  
with the results of other authors [4] and 1141. In the case of Pd, the form of our 
x ( q )  curve is very close to that of [4]. Both calculations give a sharp maximum at 
q = 0, decreasing fast for small q and changing relatively little for large q. The value 
of the enhancement obtained by 141 is somewhat higher than in our case. However, 
this is a result of an arbitrary scaling of the unenhanced susceptibility before the 
integral equation for the enhanced susceptibility is solved, and these values cannot be 
compared directly. We also note that in [4] the vector q defines a continuous change 
of the applied field, in contrast to our case in which the fields are supposed to be 
uniform within each atomic sphere. 

It appears that this latter point can explain the substantial quantitative differ- 
ence between the results obtained for V in our calculations and in [4]. Both cal- 
culations give approximately the same values for the susceptibility at q = 0 and a 
non-monotonous behaviour of s with increasing q. However, the decrease of both 
susceptibilities, and the enhancement reported in [4] for large q were not obtained 
in our calculations. 

Jarlborg [14], who, like us, used fields uniform within each atomic sphere, carried 
out calculations of the enhancement for three values of q = ( O , O , q )  where q = 0, 
0.5 and 1. In agreement with our calculations, by comparing the enhancement for 
q = 1 with that for q = 0 one recognizes a strong decrease in the case of Pd and a 
small increase in the case of V However, our calculations do not confirm the linear 
q dependence of the enhancement for V and Pd supposed by Jarlborg [14]. 

To estimate the extent of the anisotropy of the susceptibility and of the exchange 
parameter, calculations for V and Pd were carried out for different directions in 
reciprocal space (figures 1 and 4). For both metals we found the parameter I to be 
almost isotropic, whereas the anisotropy of the susceptibility was quite pronounced. 
However, in the case of Pd (figure 4), the overall behaviour of the susceptibility, 
i.e. its sharp maximum at q = 0 and its monotonous decrease with increasing q is 
common for all directions of q. This is different for V (figure 1) where in the (O,O, 1 )  
direction the susceptibility possesses a maximum at q = 0 in contrast to the (1 ,1 ,1 )  
direction in which the susceptibility is a maximum at the Brillouin-zone boundary. 

has roughly the same value at q = 0 and q = (O,O, 1). 
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Above, we briefly commented on the weak q dependence of the Stoner parameter; 
this suggests that the exchange parameter can indeed be treated as a local atomic 
propem, independent of q, having values in the range of 7.5 to 30 mRyd for all 
atoms. This is in good agreement with Himpsel [I61 who reached this conclusion 
on the basis of experimental information about magnetic 3d crystals. From our 
calculations it appears that this is also so for the non-magnetic 3d and 46 crystals. 

The weak dependence of I on q allows us to trace back the strong q dependence 
of the enhanced susceptibility to the q dependence of the unenhanced susceptibility. 
For q = 0 it is well known that xo is connected with a property of the unperturbed 
state, namely the density of states at the Fermi energy, because in this case the 
applied field lifts the spin degeneracy of the bands, leading to a repopulation of 
the shifted spin-up and spin-down bands at the Fermi energy. For non-vanishing q 
the situation is substantially more complicated because the change of the electronic 
structure cannot be reduced merely to shifted states. In the case of Pd we see that 
the high density of states at thc Fermi energy does not lead to a high unenhanced 
susceptibility for large q. As pointed out in section 2, for q # 0, states of opposite 
spin projection are separated by the vector q in reciprocal space and, in general, they 
hybridize. Bonding states have lower energy and possess a positive spin projection 
on the local direction of the magnetic field; antibonding states have higher energy 
and possess a negative spin projection. However, those states close to the Fermi 
energy in zero field that become antibonding states will be emptied in a finite field. 
If such states exist in substantial numbers, they will lead to a noticeable increase of 
the local magnetic moment and to a large unenhanced susceptibility. An example of 
this is the case of Cr [39] for which there arc large (‘nesting’) pieces of the Fermi 
surface separated by the vector q = (0,0,1) and, as a result, the susceptibility xo 
for q Y (O,O, 1) is of the order o l  three times higher than it is for q = 0. 

3.2. Longitudinal suscepfibilip or Fep CO find Ni 

We now turn to a discussion of our results shown in figures 5-10 which concern 
the metals BCC-Fe, FCC-Fe, FCC-Co. I-ICP-CO and FCC-Ni. We emphasize again that 
we now determine the susceptibilities and x0, and the Stoner parameter in the 
magnetic states as described in section 2 and not in non-magnetic states. 

25 

0 05 1 
9 

Figure 5. The Iota1 ener&y as a function of q for the (O,O,l) direction. e: =-Fe; A: 
BCC-F~; 0: FCC-CO; 0: Hce-CO; V: Ni. 



Magnetic s~iscepribility of transition metals 6937 

1 

p 
= 0 9' 

,..a 
1 

,,.Q...a..~' 
F 
x" 
$ 0.5 - 

i, -,c* * Ix .... 
. .  
-_.I ..' 

0 
0 0.5 1 

9 

Figure 6. T h e  q depcndencc of unenhanced and cnlianced susceptibilities, of the Stoner 
parameter and of the local magnetic momenl of FCC-Fe for the (0,0,1) direction. The 
Same units and the same symbols are used as in figure 1 for susceptibilities and for 
the Stoner parameter. 0: magnetic moment given in units of mo(0). Here xmax = 
2.18 x IO-* emulmole mo(0) = 2 . 5 5 ~ ~ .  

. f  E $ 0.5 lL/loo . n  i. 5 0 K  - -k 

p"."."(.""s 8.:b~-~---s E 
....fl t x" 
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..1 

0 0 
0 0.5 1 

9 
Figure I. The q depcndencc of unenlianced and enhanced susceptibilities, of the Sloner 
parameler and of l l ic local megnelic moment of Bm-Fe for the (O,O,l) direction. The same 
units and the same symbols i re  used as in figure 6.  Here xmax = 3 . 5 0 ~  emulmole 
and mo(0) = 2 . 1 3 p ~ .  

We begin with figure 5 which shows the total energy as a function of the wave 
vector q thus giving information about the state of 'equilibrium' at a given q. For 
Fcc-Fe detailed results have been obtained previously by means of LMTO and ASW 
calculations [19,20], Ni and ucc-Fe have also been the objects of previous discussions 
[32]), but our results for CO are new. 

For FCC-Fe the magnetic moment decreases slowly with increasing q, attaining at 
q = 1 about 70% of its maximal value. The total energy of FCC-Fe is minimized for 
q = 0.6. Therefore, in agreement with experiments [40] and previous calculations 
[19, 201, the ground state of FCC-F~ is non-collinear; however, in the four other cases 
it is ferromagnetic. For BCC-Fe (figure 7) the magnetic moment is approximately 
unchanged up to q = 0.3 and then decreases for increasing q; the larger q, the faster 
its decrease. For q = 1, different methods give different results [32] for the value of 
the self-consistent magnetic moment, a fact that is explained by detailed investigations 
[32]; these showed that for values or q close to one there are two states, magnetic 
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Figure 8. The p dependence of unenhanccd and enhanced susceptibilities, of the Stoner 
parameter and of the loC3l magnetic moment of FCC-CO for the (0.0,l) direction. The 
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F b r e  9. The q dependence of uncnhanced and enhanced susceptibilities, of the Stoner 
parametcr and of the local magnetic moment of H C P C O  for the (0P.l) direction. The 
same unils and the Same symbols are used as in figure 6 for susceptibilities, for the 
parameter I and for thc magnetic moment. The value of q is given in units of 2a/c. 
Here xmar = 7.36 x IO-* emulmole and mo(0) = 1.54~8. 

and non-magnetic, for which the difference in the total energy is very small. The 
value of the self-consistent magnetic moment reacts sensitively to the details of the 
calculational procedure, the choice of the lattice constant, the basis set etc. Our 
calculations showed a pronounced instability at q = 1 a result which needs further 
investigation. 

For the cases of FCC-CO and Ni we obtain the important result that starting at 
q = 0.6 for CO and q = 0.5 for Ni the magnetic moment vanishes, i.e. for large 
values of q the self-consistent state is nonmagnetic. Since the function n ( g )  contains 
information about the dependence of the local magnetic moments on the angles 
between the spins of adjacent atoms, our finding is important for finite-temperature 
properties of itinerant-electron magnets. In  particular, it implies that the assumption 
that a disordered local moments state exists [41], i.e. that the values of the local 
moments are independent of the interspin angles, is not valid for FCC-CO and Ni, 
even for qualitative considerations. 
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Figure 10. The q dependence of unenlianced and enhanced susceptibilities of the Stoner 
parameter and of the local magnetic moment of FCC-Ni for the (O,O,l) direction. The Same 
units and the same symbols arc used as in figure 6. Here xmrr = 4 . 1 9 ~  IO-' emulmole 
and mo(0) = 0 . 5 9 ~ ~ .  

In the case of HCP-CO the magnctie moment decreases slowly with increasing q, 
retaining 60% of its ferromagnetic valuc at q = 0.9. However, at q = 1.0 the state 
of lowest energy is nonmagnetic. 

The non-self-consistent and self-consistent response of the local atomic moments 
to  a small applied field, as well as the  values of the exchange parameters, I ,  are 
shown in figures 6-10 as functions of q. I n  all live cases the susceptibility is minimal 
for the ferromagnetic configuration or lor configurations close to it and the values of 
the enhancements are very small. According to (13), this shows that a given change 
of the amplitude of the magnetic moment costs more in the ferromagnetic case than 
in the case of configurations having large q. 

If we suppose that a deeper minimum of the total energy of the self-consistent 
state, E q ( m o ( q ) ) ,  corresponds to a steeper parabola in (13), the minimum of the 
susceptibility for q = 0 may be considered to be a natural result for CO, Ni and 
BCC-Fe bebause of the ferromagnetic ground state of these metals. However, FCC-Fe 
has a non-collinear ground State and, hence, this explanation is not valid for it. We 
believe, instead, that the following is important: the ferromagnetic 3d metals adjust 
their Fermi energies in the self-consistcnt states such that the state densities at the 
Fermi energy are, in general, low. As a result, the susceptibility is not high, even 
when the ferromagnetic configuration does not correspond to the minimum of the 
total energy. For non-collinear states ((I f 0), however, we previously discussed 
another mechanism that increases the susceptibility by hybridization. 

In the cases of FCC-Fe and OCC-Fe the susceptibility has a clear tendency to 
increase with increasing q .  This is quite different for Ni and FCC-CO, for which the 
enhanced susceptibility has a sharp peak (figures 8 and 10) near those values of p 
that mark the boundary between the magnetic and non-magnetic states. For HCP- 
CO (figure 9) the borderline between magnetic and non-magnetic states is close to 
the Brillouin-zone boundary, and again we have a sharp increase of the enhanced 
susceptibility here. Thus, near these q values, there are two different self-consistent 
states with nearly the same total energy giving rise to a very flat minimum of the 
total energy as a function of the magnetic-moment length, m. Any consistent theory 
of finite-temperature properties of itinerant-clcctron magnets must take into account 
the variation of the e n e r a  of the self-consistent state with q (figure 5) as well as 
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the corresponding variation with local moment size. The large peak in the enhanced 
susceptibility for Ni and CO close to the boundary between the magnetic and non- 
magnetic states will result in an important contribution to the partition function of 
the crystal due to larger statistical weights of these states. 

We return now to a discussion of the q dependence of the Stoner parameter, 
I .  It is quite remarkable tha t  in view of the pronounced q dependences of the 
susceptibilities, the quantity I is as constant as it is, except in the aforementioned 
case of FCC-Co. In agrecment with 1141 the values of I for Fe, CO and Ni, for q not 
too close to 0, have a tendcncy to be higher than for the other metals considered 
here. 

On the basis of these results we repeat that the Stoner parameter can, for many 
practical purposes, be treated as a constant characterizing a particular atom. Sub- 
stantially lower values of I obtained for ferromagnetic configurations of FCC-Fe and 
Fcc-Co show, however, that (10)-(12) fail to describe the connection between unen- 
hanced and enhanced susceptibilities in these cases. We relate this difficulty to the 
fact that in (10) the effects of a charge density disturbance caused by the magnetic 
field are neglected. We suggest t h e  following explanation for the fact that this diffi- 
culty only occurs for configurations close to ferromagnetic, and for magnetic crystals. 
In this case, applying a field leads to transitions of some electrons from down-spin 
states to up-spin states. I f  thcre is a large difference between the initial and the 
final states, the charge distribution may be noticeably disturbed. For Fe and CO the 
difference of the spin-up and spin-down states at the Fermi energy can be substantial 
because of the large magnetic moment of the ferromagnetic state and, consequently, 
the large exchange splitting of the spin-up and spin-down bands. Note that for non- 
magnetic crystals this splitting is zero and for Ni it is relatively small. None of these 
dilficulties occur for large q, for which there is a strong hybridization of the spin-up 
and spin-down states. In this case the field will not cause the transition of electrons 
from occupied states to empty states; it  leads, instead, to an increase of the positive 
spin projection in the bonding states and of the negative projection in the antibonding 
states, and a sizeable charge-density rearrangement does not take place. 

In  closing we want to emphasize that there arc two ways to introduce the pa- 
rameter I for a magnetic crystal. In the first case (see, e.g., 130, 421) the parameter 
I is considered to be a coellicient of proportionality between the value of the mag- 
netic moment and the value of the corresponding exchange field, where the exchange 
field characterizes the difference in the potentials expericnced by the electrons with 
opposite spin projections. A perturbation treatment 1421 or a simplified variational 
approach [12, 131 allows an estimate of I based on the electronic structure of non- 
magnetic states. The value of I so determined serves to investigate the instability of 
the non-magnetic state. 

An alternative way to introduce the parameter I (see, e.g., 171) is to consider it as 
a coefficient of proportionality, not between the magnetic moment and the exchange 
field, but between deviations of these quantities from their equilibrium values. This 
value of I serves to calculate the enhanced susceptibility of a magnetic crystal and is 
estimated in the present paper. 

If we suppose the magnetic moment and the exchange field are strictly propor- 
tional, then both values of I are the same. Our calculations show that this supposition 
holds for non-collinear magnetic configurations. However, for a ferromagnetic eonfig- 
uration, the parameter I shows, in some cases, ‘an instability’ which we explain by a 
charge density variation caused by the change of the magnetic moment. The effcct of 
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this charge transfer depends sensitively on the wave functions of the electron states 
with energies close to the Fermi level. Therefore, the instability shows up differently 
for different metals, depending on the lattice structures and even on the lattice s p a c  
ings. In our calculations, this effect appears to be especially strong for FCC-Co, where 
a small difference between the enhanccd and unenhanced susceptibilities leads to a 
value of I close to zero. 

Note, that in [7] a formula was derived for the exchange parameter of the ferro- 
magnetic state. For Fe and Ni this formula gives results which are very close to the 
results of our calculations. However, for CO the difference is large. We think that 
simplifications made in the derivation of the formula are unjustified and do not ac- 
count for peculiarities of the charge and spin self-consistency of the electronic states 
of FCC-CO in a magnetic field. 

4. Conclusions 

We applied ab inifio electronic-structure calculations to study basic physical pictures, 
in this case for a number of transition metals that were chosen to demonstrate 
various different but typical propcrtics. After a brief look at the theoretical basis we 
concentrated on the unenhanced and the enhanced static but wave-vector dependent, 
magnetic susceptibilities and the Stoner-exchange parameters for the nonmagnetic 
metals V, Cr, Rh and Pd, and the magnetic metals Fe, CO and Ni, all at zero 
temperature. 

In the first group we contrasted the susceptibility behaviour of Cr (in theoretical 
equilibrium, with a slightly decreased lattice constant) with that of Pd, on one hand, 
these being near an antilerromagnetic and a ferromagnetic instability, rcspectively, 
with V and Rh, on the other hand, which show no such features. In all these cases 
the Stoner parameter, I ( q ) ,  was round to be nearly constant and can therefore be 
treated as an atomic property. 

Our results for the magnetic metals contrasted clearly the two forms of Fe: FCC-Fe 
having a non-collinear and BCC-FC a ferromagnetic ground state. For FCC-CO and Ni 
the sell-consistentlydetermined magnetic moments were found to vanish for values 
of q larger than 0.6 and 0.5, respectively. This, in our opinion, makes a disordered 
local moment state, which has repeatedly been postulated [41, 431, highly unlikely 
in CO and Ni. Furthermore, the large peak in the enhanced susceptibility near the 
values of q obtained and interpreted by us will carry large statistical weight in the 
partition function. This must, in our opinion, be taken into account by any theory 
for finite-temperature properties of itinerant-electron magnets. Finally, the Stoner 
parameter, I ( q ) ,  in the magnetic metals, and determined in the magnetic states (and 
not in the often-used non-magnctic states), was round to be nearly constant for values 
of q that were not too small. Hence, it can again be treated as an atomic property. 
However, for q near 0, thc ferromagnetic regime, the Stoner parameter calculated 
shows quite a peculiar behaviour, especially for FCC-CO; a behaviour that we tried to 
relate to properties of the electronic structure. 
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